
 CS 151 Name _________________

Exam II

November 21, 2014

1. [15 points] Start with an empty Binary Search Tree. Draw a picture of the tree that will

result from adding the following seven values to your tree, in the order they are given:

 20 30 5 7 42 9 8

2

2. [5 points] What is the Balance Condition for AVL trees?

3. [15 points] Start with the AVL tree shown below. Draw the AVL tree that will result

from adding, in order, the following values: 1 8 9 15

3

4. [15 points] Here is an array of 9 integer values:

12 9 4 1 7 6 8 3 2

We can think of this as a tree. Give the array that will result from turning this array into a

heap using the linear-time algorithm we developed in class. You may find it easier to

think in terms of trees, but put your final answer back into an array.

4

5. [20 points] For a text analysis project I need a map where the keys are words and the

value associated with a word is the number of times that word appears in a text sample.

So <”bob”, 286> is a typical <key, value> pair. I could implement this as a hashmap with

separate chaining (linked lists) you did in Lab 8, or as a hashmap with linear open

addressing as we did in class, or as a treemap with an AVL tree. I will put n

<key, value> pairs into this structure. The hashmaps use an array of size M.

a) What are Big-Oh estimates of the worst-case and average case

lookup times for a word that is in the map, for each of these structures.

 Average Case Worst Case

Hashmap,

chained

Hashmap,

linear open

address

Treemap

b) Suppose I want to output the words in alphabetical order; which structure makes that

easiest? Why?

c) Suppose I want to output the words in order from the most frequent to the least

frequent. Which structure makes that easiest? How would you do that?

5

6. [15 points] As we discussed in class, Tries can use a lot of memory. One way around

this is to use a trie for the first k levels (where k might be 3 or 4 or 5) and then have the

leaf nodes store lists of all of the words with the same prefix. Here is such a structure

with k==2 that stores “bob”, “bobby”, “bobbin”, “blue”, “black, “bluster” and “crazy”.

How would you create classes to make such a structure? Give class headers and class

variables for such a trie. You don’t need to specify the methods, just the data variables.

Don’t over-think this; I am just asking how to make a tree where the leaves have different

data than the internal nodes.

6

7. [15 points] Give an algorithm (it is sufficient to explain it in English, but you can give

pseudo-code if you wish) for the Binary Search Tree method V findNext(K x) which

returns the value associated with the smallest key in the tree that is greater than x. If

there is no key larger than x, return null. For example, with the following tree where the

keys and values are the same

findNext(5) returns 10, findNext(18) returns 20, findNext(20) returns 30 and

findNext(50) returns null. If the tree contains n nodes and is balanced (for example, if it

is an AVL tree), estimate the running time for findNext(key).

7

[This page is for scratch work]

8

Please write and sign the Honor Pledge at the end of your solutions.

